首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   9篇
  国内免费   1篇
大气科学   8篇
地球物理   33篇
地质学   36篇
海洋学   4篇
天文学   7篇
自然地理   4篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   10篇
  2016年   13篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   10篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有92条查询结果,搜索用时 625 毫秒
51.
In this paper, we study two different model reduction strategies for solving problems involving single phase flow in a porous medium containing faults or fractures whose location and properties are known. These faults are represented as interfaces of dimension N ? 1 immersed in an N dimensional domain. Both approaches can handle various configurations of position and permeability of the faults, and one can handle different fracture permeabilities on the two inner sides of the fracture. For the numerical discretization, we use the hybrid finite volume scheme as it is known to be well suited to simulating subsurface flow. Some results, which may be of use in the implementation of the proposed methods in industrial codes, are demonstrated.  相似文献   
52.
Forests play a significant role in protecting people, settlements in mountainous terrains from hydrogeomorphic hazards, including shallow landslides. Although several studies have investigated the interactions between forests and slope instabilities, a full understanding of them has not yet been obtained. Additionally, models that incorporate forest stand properties into slope failure probability analyses have not been developed. In principle, physical‐based models, which are powerful tools for landslide hazard analyses, represent an appropriate approach to linking stand properties and slope stability. However, the reliability of these models depends on numerous parameters that describe highly complex geotechnical and hydrological processes (e.g. potential failure depth, saturation ratio, root reinforcement, etc.) that are difficult to measure and model. In particular, the spatial heterogeneity of root reinforcement remains a problem, and the use of physically based models from a forest management perspective has been limited. This paper presents a procedure for assessing slope stability in terms of the Factor of Safety that accounts for forest stand characteristics such as tree density, average diameter at breast height and minimum distance between trees. The procedure combines a three‐dimensional (3D) slope stability model with an evaluation of the variability of root reinforcement in terms of a probability distribution, according to forest characteristics. Monte Carlo simulation is used to account for the residual uncertainties in both stand characteristics and 3D stability model parameters. The proposed method was applied in a subalpine catchment in the Italian Alps, mainly covered by coniferous forest and characterized by steep slopes and high landslide risk. The results suggest that the procedure is highly reliable, according to landslide inventory maps [area under the ROC curve (AUC) is 0.82 and modified success rate (MSR) is 0.70]. Thus, it represents a promising tool for studying the role of root reinforcement in landslide hazard mapping and guiding forest management from a slope stability perspective. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
53.
In classical earthquake risk assessment, the human behavior is actually not taken into account in risk assessment. Agent‐based modeling is a simulation technique that has been applied recently in several fields, such as emergency evacuation. The paper is proposing a methodology that includes in agent‐based models the human behavior, considering the anxiety effects generated by the crowd and their influence on the evacuation delays. The proposed model is able to take into account the interdependency between the earthquake evacuation process, and the corresponding damage of structural and non‐structural components that is expressed in term of fragility curves. The software REPAST HPC has been used to implement the model, and as a case study, the earthquake evacuation by a mall located in Oakland has been used. The human behavior model has been calibrated through a survey using a miscellaneous sample from different countries. The model can be used to test future scenarios and help local authorities in situations where the human behavior plays a key role. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
54.
This work aims to provide a dynamic assessment of flood risk and community resilience by explicitly accounting for variable human behaviour, e.g. risk-taking and awareness-raising attitudes. We consider two different types of socio-hydrological systems: green systems, whereby societies deal with risk only via non-structural measures, and technological systems, whereby risk is dealt with also by structural measures, such as levees. A stylized model of human–flood interactions is first compared to real-world data collected at two test sites (People’s Republic of Bangladesh and the city of Rome, Italy) and then used to explore plausible trajectories of flood risk. The results show that flood risk in technological systems tends to be significantly lower than in green systems. However, technological systems may undergo catastrophic events, which lead to much higher losses. Furthermore, green systems prove to be more resilient than technological ones, which makes them more capable of withstanding environmental and social changes.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR not assigned  相似文献   
55.
Three different parametric methods for the evaluation of intrinsic vulnerability to pollution have been applied in a hydrothermal carbonate aquifer located in central-northern Italy and the results obtained were compared with each other. The study area, large, approximately 152 km2, lies in an area of the northern Apennines. The investigated aquifer feeds the hot thermal springs of Saturnia. The vulnerability assessment methods used are: SINTACS, GODS and COP. The vulnerability maps obtained were first individually examined, and then they were compared with each other by means of spatial analysis. These maps show similar results for the estimation of the vulnerability just in some areas. SINTACS yields areas potentially vulnerable to pollution along the Albegna River and its major tributaries in the northern part of the study area. The GODS index map reflects the great importance that this method gives to the lithological characteristics of the unsaturated zone in the subdivision of areas with different vulnerability. GODS and COP methods agree in classifying low vulnerability in the most part of central-southern study area, where the aquifer is confined by the Pliocene clay deposits. Based on the conceptual model of groundwater flow developed for the aquifer under investigation, COP seems the most appropriate method among those applied in this work, in particular with regard to the assessment of the vulnerability of the recharge area of thermal groundwater. Located in the northern part of the study area, where karst carbonate formations of the Tuscan Nappe outcrop, this recharge area is classified by the COP method as highly vulnerable to pollution.  相似文献   
56.
Overland flow, sediments, and nutrients transported in runoff are important processes involved in soil erosion and water pollution. Modelling transport of sediments and chemicals requires accurate estimates of hydraulic resistance, which is one of the key variables characterizing runoff water depth and velocity. In this paper, a new theoretical power–velocity profile, originally deduced neglecting the impact effect of rainfall, was initially modified for taking into account the effect of rainfall intensity. Then a theoretical flow resistance law was obtained by integration of the new flow velocity distribution. This flow resistance law was tested using field measurements by Nearing for the condition of overland flow under simulated rainfall. Measurements of the Darcy–Weisbach friction factor, corresponding to flow Reynolds number ranging from 48 to 194, were obtained for simulated rainfall with two different rainfall intensity values (59 and 178 mm hr−1). The database, including measurements of flow velocity, water depth, cross-sectional area, wetted perimeter, and bed slope, allowed for calibration of the relationship between the velocity profile parameter Γ, the slope steepness s, and the flow Froude number F, taking also into account the influence of rainfall intensity i. Results yielded the following conclusions: (a) The proposed theoretical flow resistance equation accurately estimated the Darcy–Weisbach friction factor for overland flow under simulated rainfall, (b) the flow resistance increased with rainfall intensity for laminar overland flow, and (c) the mean flow velocity was quasi-independent of the slope gradient.  相似文献   
57.
Results of a research carried out on the lavas from Campi Flegrei and Somma-Vesuvius volcanic districts are reported here. The lavas have been widely employed, since Roman age, in several important monumental buildings of the Campania region, mainly in the town of Naples and in its province. They are classified as trachytes (Campi Flegrei products), tephri-phonolites and phono-tephrites (Somma-Vesuvius complex) from a petrographical point of view. Sampling was carried out from well-known exploitation districts. A substantial chemical difference between the products of the two sectors was confirmed, while petrophysical characterization evidenced similarity among the two different materials, although some differences were recorded even in samples coming from the same exploitation site.  相似文献   
58.
The Balagne ophiolite from central-northern Corsica represents a continent-near paleogeographic domain of the Jurassic Liguria-Piedmont ophiolitic basin. Pillow and massive basalt lavas are primarily associated with Middle–Upper Jurassic pelagic sediments (mostly radiolarites at their base), continental-derived quartzo-feldspathic clastic sediments and ophiolitic breccias containing clasts of gabbros and basalts. The basalt-sedimentary succession is tectonically associated with a slice composed of an intrusive sequence overlain by basalt lavas. A “plagiogranite” from the intrusive sequence was dated by U–Pb zircon geochronology. Although affected by some uncertainty, mainly reflecting common Pb contamination, the U–Pb zircon data suggest a crystallization age of 159 ± 3 Ma (MSWD = 6.3), which is coeval with the formation of oceanic lower crust in the Schistes Lustrés units from Alpine Corsica. The predominance of quartz grains preserving typical volcanic shape, the prevalence of prismatic zircons and the arkose whole-rock composition indicate that the continental-derived quartzo-feldspathic clastic sediments have a low degree of textural maturity. U–Pb zircon geochronology carried out on two distinct levels of quartzo-feldspathic clastic sediments identified the predominance of zircons with within error U–Pb dates at ~280 Ma; minor components at ~457, ~309 and ~262 Ma were also obtained. The U–Pb date distribution is consistent with a source magmatic material mostly developed during the Variscan orogenic collapse.  相似文献   
59.
The aim of this study was to provide a contribution to seismic hazard assessment of the Salento Peninsula (Apulia, southern Italy). It is well known that this area was struck by the February 20, 1743, earthquake (I 0 = IX and M w = 7.1), the strongest seismic event of Salento, that caused the most severe damage in the towns of Nardò (Lecce) and Francavilla Fontana (Brindisi), in the Ionian Islands (Greece) and in the western coast of Albania. It was also widely felt in the western coast of Greece, in Malta Islands, in southern Italy and in some localities of central and northern Italy. Moreover, the area of the Salento Peninsula has also been hit by several low-energy and a few high-energy earthquakes over the last centuries; the instrumental recent seismicity is mainly concentrated in the western sector of the peninsula and in the Otranto Channel. The Salento area has also experienced destructive seismicity of neighboring regions in Italy (the Gargano Promontory in northern Apulia, the Southern Apennines chain, the Calabrian Arc) and in the Balkan Peninsula (Greece and Albania). Accordingly, a critical analysis of several documentary and historical sources, as well as of the geologic–geomorphologic ground effects due to the strong 1743 Salento earthquake, has been carried out by the authors in this paper; the final purpose has been to re-evaluate the 1743 MCS macroseismic intensities and to provide a list of newly classified localities according to the ESI-07 scale on the base of recognized Earthquake Environmental Effects. The result is a quite different damage scenario due to this earthquake that could raise the seismic potential currently recognized for the Salento area, and consequently upgrade the seismic hazard classification of the Salento. Indeed it is important to remind that currently, despite the intense earthquake activity recorded not only in the Otranto Channel, but especially in Greece and Albania, this area is classified in the least dangerous category of the Seismic Classification of the Italian territory (IV category).  相似文献   
60.
Following the increase in seismic activity which occurred near Isernia (Molise, Central Italy) in January 1986, a digital seismic network of four stations with three-component, short-period seismometers, was installed in the area by the Osservatorio Vesuviano. The temporary network had an average station spacing of about 8–10 km and, in combination with permanent local seismic stations, allowed the accurate determination of earthquake locations during an operating period of about one month. Among the 1517 detected earthquakes, 170 events were selected with standard errors on epicentre and depth not greater than respectively 0.5 and 1.5 km. The most frequent focal depths ranged between 4 and 8 km, while the epicentres distribution covered a small area NE of Isernia of about 10 km2. A main rupture zone could not be clearly identified from the spatial distribution of the earthquakes, suggesting a rupture mechanism involving heterogeneous materials. The activity was characterized by low energy levels, the largest earthquake, on January 18, 1986, havingM D =4.0. The time sequence of events and pattern of seismic energy release revealed a strong temporal clustering of events, similar to the behaviour commonly associated with seismic swarms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号